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BEHAVIOUR OF A THICK CIRCULAR SLAB AFTER BUCKLING* 

A.A. ZELBNIN and L.M. ZUBOV 

Using the equations of the three-dimensional non-linear theoryofelasticity, 
the problem of the axisymmetric buckling and initial post-critical 
behaviour of a circular cylinder of a neo-Hookean material compressed 
uniformly along the lateral surface is investigated. The cylinder endfaces 
are free while the lateral surface is clamped from rotation but can slide 
freely in the direction of the cylinder axis. Bifurcation of the cylinder 
equilibrium mode that occurs during attainment of critical values of the 
loading parameter is studied. Asymptotic representations are found for 
the branching solutions under almost critical loads. The qualitative 
distinction between the post-critical behaviour of a thick slab and the 
behaviour of a thin plate is disclosed. 

1. Consider the equilibrium of an elastic circular cylinder O<r < a, -h<z<h, loaded 
.onq the lateral surface. When there are no mass forces, the differential equations equili- 

brium have the form 

V.D=O, V=e,-&+ee-$+e& (l-1) 

Here D is the 
the undeformed state 
It is assumed that a 

non-symmetric Piola stress tensor, rr 8,s are cylindrical coordinates in 
of the body and err eer e, are unit vectors tangent to the coordinate lines. 
constant radial displacement is given on the cylinder lateral surface, 

and there are no shear stresses, while the plane faces of the body are stress-free. This 
results in the following boundary conditions 

e,+D = 0, z = $-h 0.2) 

e,.D+e, = 0, R.e, = (1 - e) a, r = a 

where 2h is the height of the cylinder , a is its radius in the undeformed state, R is the 
radius-vector of points of the deformed body, and e is a loading parameter. For an incom- 
pressible neo-Hookean material we have /l, 2/ 

D = Zc,VR -j- 2q (VRT)-1 0.3) 

det (VR) = Z (1.4) 

Here c, is a material constant, and q is an unknown function of the coordinatesdetermined 
from the equilibrium equation and the incompressibility condition (1.4). The fundamental 
solution of the boundary value problem (l.l)-(1.4) that describes the precritical state of the 
cylinder in uniform strain and is given by the relationship 

R0 = fire, + bmaze,, 8 = -c$~, f~ = 1 - e (1.5) 

Here and below the superscript ' refers to the precritical State. 
We shall seek axisymmetric equilibrium modes close to the fundamental solution, i.e., we 

set 
R = R” + u (r, a) e, + UJ (r, z) e, 0.6) 

q = c, h f p (r, @I, m = q’ci-’ 
Taking (1.5) and (1.6) into account we write the incompressibility equation in the form 

[(B+-g)(P+g) - $g-] (e++)=i (1.7) 

Using the relationship 
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V.[J (CRT)mlI = 0, J = det (PR) 

the equilibrium Eq.Cl.1) for strain of the form (1.6) can be converted to the form 

f 
$ + _Lz + L$ - + + (p ,_ +) [2$ (pP + $_) - (1.3) 

+-$]]eF+{$++$+g+ 

The boundary conditions for the functions u,w,p are written thus 

[g - (P++)(m+p) $]e? + [Pa + 

-z- aw +(B+ +)(m+p)(b++-)je,=O, z=-Ch 

-gy3+++&4 u=o, r=a 

(1.9) 

Introducing the dimensional quantities 

r' = ra-', z' = za-r , u' = ua-', 10' = Lva-i, h' = ha-r 

we arrive from (1.7)-(1.9) at the following non-linear boundary value problem in u' (r', z'), 

W' (r', z'), p (r’, 2’) (we henceforth omit the primes): 

I (I, D) v (2) = f (2, v) (1.10) 

b (G D) v (I) = F (x, v), z=+z, r=l (1.11) 

Here 5 = (r, 2) v = (u, w, p), f = (fl, fat fd 
F SE (f’l, Fs)y Z (~7 D) s (Ztj (~7 D))i,j=~.z,a 
b (G D) = h h W=I. a:/=~,z,a 
I,, = alz + r-V, + aza - 9, Z12 = 0 

ZlJ = 8-‘4, I,, = 0, Z,, = aI2 + r-V, + as2 

Z,, = f% Zsl = -f3-’ (3, + r-l), Is2 = -_Ba&, I,, = 0 

fi = (p + r-k) J (w, p) - ~Pr-W~ 

I2 = (fi + r-h) J (p, u) - /3rm1uafi 

fJ = (p + I-%) J (u, w) + @--‘u (daw + flP&u) 

41 = 4, b,, = 8-4, b,, = 0, b,, = -Bea (8, + r-l) 

b,, = a,, bps = f5”, z = )h 

bIl = 1, b,, = 0, b,, = 0, bsI = fi-3aa 

bea = 4, b,, = 0, r = 1 

FI = (j3p - @-“r% + Ppu) alw, F, t (-_Bp+ 

fi-4r-1u - r-‘pu) i3,u - fVpu, 2 = +h 

FI = 0, F, = (flp - fi-“rmlu + r-‘pu) &u, r = 1 

~3, = iMr, a2 = al&, J (u, u) = &u~‘,v - cQ&’ 

The differential expressions Z and b on the left-hand sides of (1.10) and (1.11) 
are linear but the expressions f and F do not contain linear components. The quantity fl is 
a parameter in the boundary value problem (1.10) and (1.11). 

2. It can be shown that the system (1.10) is elliptical according to Douglis-Nirenberg, 
while the boundary conditions (1.11) are additional /3, 4/, with the exception of the case 
when fJ satisfies the equation 

Be + B" + 3pa-- 1 = 0 

As will be shown below, this case corresponds to the critical value of the loading par- 
ameter p for an infinite cylinder. We set the linear operator Av z (IV” bv), which we 
define in the Banach space 

E1 c Wgz (G) @ W,* (G) 8 WI’,(G); G: (0 < r < 1, --)I < z < h) 

in correspondence to the left-hand sides of (1.10) and (1.11). 

Then the domain of values of this operator belongs to the Banach space 
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J-h = L, (‘3 8 La (‘3 Q W,l (G) $ w;‘* (r) CD ws’” (I’); 

r: (r = 1, 2 = &h] 

Here Wa8 (G), W’,l (G) are Sobolev spaces, La(G) is Lebesgue space, W;‘l(l”) is Slobodetskii 
space, and the symbol $ denotes the direct sum of spaces. 

We assume that the desired functions u,w,p belong to the space Was(G). Then it can 
be shown that the right-hand sides of (1.10) and (1.11) belong to Ez. This enables us to write 
the boundary value problem in the operator form 

Av = T, r ss (f, F) (2.1) 

We write the necessary and sufficient condition for solvability of (2.1) by using the 
results of 14, 5/. In the case under consideration , it takes the following form after re- 
duction 

(2.2) 

-h 

where g = (%P $‘a* $8) are eigenvector-functions of the operator A that form a basis of the 
subspace of zeros of this operator. 

3. To find the critical loading parameters for which bifurcation of the cylinder equilib- 
rium occurs, we examine the linearized problem 

Av==O (3.1) 
Eq.(3.1) agrees with the neutral equilibrium equations for a cylinder as obtained in /2/, 

We will seek the eigenfunctions of problem (3.1) in the form 

UJ ==Q(Z) + (3.2) 

where the k,, are determined from the condition 

J, (k,) = 0 (3.3) 

and J, (k% A 6%~) are Bessel functions. We substitute (3.2) into the left-hand side of 
(1.10) and solve them for u,,,Iu,,, p,, for f = 0. We consequently obtain 

mn (2) = BJ,sh Paz - (J"Ca shk,z + &CIl ch &z - (3.4) 
@“C, ch k,,z, W, (z) = -&C, ch & + C, ch k,,z - 
&CS sh Bfi + C, sh k,,.z, p,, (2) = C, sh f&z + C, ch f%,s 

wo (2) = c5 “+ B4C,z’/2, po (2) = c, -f- c,z 

& = fF (I - fi”)-’ kn-‘, p)* = p-‘k, 

The Ct (i = 1, 2, . . ., 7) in (3.4) are constants of integration. 
Substituting expressions (3.2) intothe boundary conditions (1.11) with zero right-hand 

sides, and taking (3.4) into account , we obtain a system of equations to determine Cl from 
which we find after reduction that c, = c, = 0 and we form two systems to determine C,, . . . . 

f& 
(4 + fi*) C, sh f&k - 2C, sh k,,h = 0 (3.5) 
2C, ch p& - PM8 (1 + @*) C, ch k,,h = 0, n = 1, 2, . . . 

(1 f fP) C, ch f&h - ZC, ch knh = 0 (3.6) 
2C, sh @& - @-” (1 + fF) C, sh k,,h = 0, n = i, 2, . . . 

The constant c, remains undetermined. This is due to the fact that the boundary con- 
ditions allow cylinder displacement as an absolutely solid body in the s-axis direction_ 

Equating the determinants of systems (3.5) and (3.6) to zero for each n, we arrive at 
transcendental equations to determine the eigenvalues fi = PO of problem (3.11, which are 
functions of kn and h 

p-’ (1 I- fl”)a th fi& = 4 th k,h (3*7) 

fi-’ (1 -I- @*)” eth f3,b = 4 cth k,,k (3.8) 

xf the cylinder is considered as a thick slab with middle surface z =O, then (3.7) 
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obtained earlier /2/ corresponds to the bending modes of slab equilibrium bifurcation when ID 
is an even function and u, p are odd functions of the .a coordinate. Eq.(3.8) corresponds to 
cylinder equilibrium modes symmetric with respect to the z = 0 plane. Since p:<1, then 
tanh k,h /tanh fi&< 1, and therefore, all roots of (3.7) are greater than the roots of (3.8) 
with the exception of the common root 0 = 1. Therefore, the critical value of the parameter 
fi is found from (3.7). 

Note that for an arbitrarily thick slab (k&-c-a) Eq.(3.7) reduces to the form 

(83 - 1) (89 $ 86 4 38% - 1) = 0 (3.9) 

Solving (3.9), we obtain B,=O.6661, from which it follows that an arbitrarily thick slab 

buckles for 8= p,. The critical value of the parameter fl=fi. is the maximum eigenvalue from 

the set of eigenvalues &(k,,h), where the quantity k, is defined in (3.3). It can be shown 
that the eigenvalue 8,, is simple and takes the maximum value for k,= k,= 3.832. 

Below we present the critical values fi* obtained from (3.7) as well as the critical 

values &' found according to the classical theory of plate buckling /6/ for certain values of 

h 

h 0.1 0.2 0.3 0.4 0.5 

$_.lOd 9674 8695 7064 4780 1843 

&.I04 9669 8644 7484 6997 6809 

It is seen that even for a fairly thick plate (h Z 0.3), the values of &' and &are 

close to one another. 

4. To construct new equilibrium modes we will use the theory developed in /7/. Let I% 
be the eigenvalue of the operator A and h the small parameter (Ih I< E). Then by setting 

B=Bl?+h it is possible to write (2.1) in the followins form (A. is the operator A in 

which the quantity p is replaced by the eigenvalue PO) 

A,v = 7 - Av + A,v s q (v), q (v) G (t, T) 

t = (f’, f2, p), T SE (F’, F2)1 

f’ = 11 - rpl adI, f’ = f* - [fw a,p 

P = BBo-‘fl + wlBo-‘a,w 
F’ = F, - [p-s] a,w, F2 = Fa - ifi p + Ip-*I (8,~ + r-b), 

z=&h 

(4.1) 

(4.2) 

F’ = F, = 0, F2 = Fp - [fi”l r&i, r = 1 

(IBkl = Bk - Bok) 

Exactly as in /7/, we use the following notation: E< is the subspace of zeros of the 

operator A0 of dimensionality s, E,m-b is the complement of the subspace E,’ to E, and Ao* is 
the contraction of the operator A,, in E,"-S. Unlike A,,the operator A,* will have a bounded 

inverse operator I'0 = (A,*)-’ which we use in the construction of small solutions of (4.1). 
Since the eigenvalues of the problem under consideration are always simple (s = 1), we 

shall seek small solutions of (4.1) in the form of series 

(4.3) 

Here E is a 

A0 corresponding 

of (4.1) in power 
obtain 

formal parameter $I,= ($r,&,*J 1s an eigenvector function of the operator 

to the eigenvalue PO. Expanding terms containing B on the right-hand side 
series in h, and the expressions containing % w, P according to (4.3), we 

?(v)si+Tal r~&'hj* 'h/as (tfiv Tit) (4.4) 

t,j = (fij'~ fij*v f& Ti, = (FtJ’, Ft,*) 

where fr,‘, Fu’ are coefficients of the expansion of the functions fk, F’ (k = 1, 2, 3; I = 1, 2), 
defined by the relationships (4.2). 

Substftuting (4.3) into (4.1) and equating the coefficients of identical powers E'hj, 

and taking (4.4) into account, we obtain a recursion system to find VI1 

A,*vlt = qij (4.5) 

from which we find 
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V 01 = 0” VI1 = ro’l11, vzo = rorlm. * * - 

To obtain the bifurcation equation from which the quantity E is determined, we sub- 

stitute (4.3) into the solvability condition (2.2) for (4.1). We consequently obtain 

Lij= f { (f*j% + f&h -C fijs43) r dr dz - 
; --h 

j (Fi& + FrjVx) r dr IL-h - j Pij% dz 1~ 
0 -h 

It is taken into account in (4.6) that P=O for r=l. 

5. We construct the inverse operator ro. To do this we consider the equation 

-4,*v = (G,, Gz, G,, g,, gr) (5.1) 

Let us right-hand side of (5.1) be representable in the form of series in the orthogonal 
functions JO (k,r) and J, (k,r) (here and henceforth the summation is over m between 1 and 

m) 
G = XL (z) J1 (k,r), Ga = GPO (~1 + ZG, (2) Jo (Lr), (5.2) 

G = GO (z) + ZGq, (a) JO (k,r) 

gr = z&m (2) Jr (k,r), g, = g,, (2) + Z&,, (2) Jo (k,r), 
z=+h - 
g, = g, = 0, r = 1 

where GO (4, ho (4 are even functions and k, satisfies the condition J, (k,) = 0. 
We will seek the solution of (5.1) in the form 

ZJ = XU, (z) J, (k,r), w = q (z) + (5.3) 

2% (a) JO (k,r), P = p. (z) + Zp, (z) Jo (k,r) 

Substituting (5.2) into (5.1) and equating the left- and right-hand sides for identical 

Jo @,A and J, (kd, we obtain a system of ordinary differential equations to determine 

%I, Wn* Pm9 lo,1 PO with boundary conditions for z=-Ch. -.. The solution of this system will be 

urn(Z) = Cuda sh fibs + C&f& Ch p$ - (5.5) 

C,,,$,” sh k,z - C,,&,” ch k,z + f I,’ (t, pa) ch k, (z - T) do + 
i 

B;” f Za” (TV B,) sh k, (z - 7) dz + Bi?Z; (z, &) 

w,(z) L - C,n$s, ch f&z - C,,!& sh B,z + C,, ch k,z + 

Cam sh k,z - f I,’ (T, f5,) ch k, (z - T) do - 
0 

B;” j Z,’ (7, B,) sh k, (z - 7) d7 - fit?Zs’ (z, 8,) 

Pm (Z) =Cun sh BG + Can ch p$ + fJii2Z11 (Z. Pa) + 

B?Z,* (2, Bo) + &,,l%B,‘~,’ (2, I$) + IV&,, (z) 

wo (z) = Go - IX’ f G,, (7) dz 
0 

~o(z)=B;~[g,,@)- {G&)dr+ SG,(r)dM%(z)] 

Cl,,, = &A;' (2Qm+ sh k:h + &R,,,- ch” k,,,h) 

C pn = kzA;r @,,Q,+ sh fl,h + 2R,,,- ch &h)j2, m + n 

C,, = 0, C,, = R,-/(?k,, sh k.h) 

C, = &&;‘(2Q,,,- ch k,h + f&R,+ sh k,,,h) 

Cti = k-,‘&,-’ (&Q, ch &h + 2R,,,+ sh B&)/2 
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Zk'(l, a)= (sha(l -u)G,,(o)do 
i 

Zka(l, a)= jcha(l-u)G,,(u)da 

AI = A (a:: k,), Ar = A (km, i%) 

A(a,Z)=4ch&shIh-j3Bs~sshahchIh 

Ba = k,-'B,5 (1 - BaT, B, = k$,-3, ~a = 1 - PO" 

BB = 1 + B06, 87 = BoW/2, B* = BllK" 

C 10 is an arbitrary constant, and n is the number of the root of (3.3) corresponding to the 
value PO. 

6. To find the coefficients .&j of the bifurcation Eq. (4.6), we write down the first 
coefficients of the expansion of the right-hand side of (4.1) 

fOll=fOIZ=fOIS=FOll=FOla = 0 (6.1) 

fll' = B3,%. f,la = - %la*~*~ f1ls= 3floWz (6.2) 

Fu'= 3&?-q& Flla= 
1 

38; a,*,-28,**, z=+h 

F,,’ = Fl12 = 0, r = 1, 

fco’ = Bo~s*s~l** + fm%~a~l~l (6.3) 

fro2 = Bcl~,~3~*~1 + Bo'Wa~*~* 

where C is an arbitrary fixed constant. 
It follows from (6.1) that &=O. Substituting (6.2) into (4.7) for i=i,j=l we 

obtain the following expression for &I after simple reduction: 

Lll=3/zj$,a~;' [fiOsB;‘k;:(l - 3&,")sh2B& + 2hlJ,B(k,) (6.4) 

It is seen from (6.3) that the functions *a, fio*,fn~3, F,,,’ are even in s while the func- 
tions $,, &, fsoz. Fpo* are odd in z. It hence follows that L,, = 0. Writing down expressions 

for fsok, F,,‘(k= 1, 2, 3; Z= 1,2) and substituting them into (4.6) for i = 3, j = 0, we obtain 
after the reduction of similar terms 

b 1 
(6.5) 

To determine us0 z (Usa, wIO,plO) we use the inverse operator ITo. We use the following 
notation: Gk = fro’, gl = F,,’ (k = 1, 2, 3; 1 = 1, 2); u = u,,, w = ~$0, and p = pto; then vIO will 
be determined from relationships (5.3) and (5.4) in which, by virtue of (6.3), 

G,, = Gso = ~a,, = 0, PO = 0, w, = conet 

C - c,, = 0 InI - for any m 
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Since the solution w = const corresponds to displacement of the cylinder as a solid body 
it is possible to set luO = 0. For the same reason there is no analogous component in q,. 
Therefore, the bifurcation Eq.(4.6) approximately takes the form 

Lao&* + L,&. = 0 

It hence follows that E = + @A)'/: + o @‘Is) (A = -L,,L&‘) , andbhe,solution (4.3) of (4.1) 
is written in the form 

v = & (LA)"* + hAv,, + (hA)"*hv,, + 0 (h) 

Two new solutions will occur depending on the sign of the expression A in one of the 
semicircles (PO - e,fio) or (fl,,,&, + e) while therewillbenoother new solutions. 

A numerical investigation of the coefficients L,,, Lso in (6.4) and (6.5) showed that L1t 

is always greater than zero while L,, can change sign depending on the value of k,h. Certain 
values of the coefficients of the bifurcation equation are presented below for C=l 

in 
0.1 0.2 0.5 

2.45.10-Z 6.4Y.i0+ 8% 4.18.10’ 
LIlo 1.17.10-s -8.89. IO-' -0:202 -2.28.10’ 

In the case of the maximum eigenvalue La,>0 for h < 0,1135 and LI, <0 for h > 0.114. 

It hence follows that for comparatively thin plates (h<O.i135) new solutions, different from 
the trivial one, occur only for loads exceeding the minimal critical load, which is in agree- 
ment with the results of the two-dimensional theory of thin plates /a/. For thick slabs, new 
solutions close to the fundamental occur only for loads less than the critical (a qualitative 
difference from the behaviour of thin plates). 

An analgous phenomenon of a qualitative change in the nature of the bifurcation as the 
thickness increases was found in /5/ in the problem of the post-critical behaviour of a thick- 
walled pipe of a compressible semilinear material. This provides a basis for concluding that 
the fact of a qualitative distinction between the post-critical behaviour of thick-walled and 
thin-walled structures is independent of the properties of. the material. Meanwhile it is clear 
that the value of the relative thickness at which a qualitative change in the bifurcation 
pattern occurs will be different for different materials. 

The noted features in the behaviour of thick-walled elastic bodies can be expected in 
other problems also, for instance, in the still uninvestigated plane problem of the post- 
critical behaviour of a compressed rectangular bar. 
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